Thursday, May 18, 2017

Obsession with Biodiversity is overshadowing loss of Bioabundance

Photo by Tibor Nagy 2014
 "...Even predators as small as spiders can have considerable impacts on not only plant diversity, but ecosystem processes as well..." May 7, 2017

This little guy in the upper lefthand corner is a Pisaurina mira nursery web spider. As you know, spiders prey on insects for their food and grasshoppers are part of that diet. Given their choice of various plants for food, grasshoppers will preferentially feed on some plants more than others. These researchers found that grasshoppers prefer to eat grasses, but when these nursery web spiders are present, they will switch to another field and change their diet to other plants like Goldenrods. The Goldenrod often dominate an area where they grow, but in the presence of invading hungry grasshoppers who start munching on these plants, they chew holes and open up their monoculture canopy, which allows other plants an opportunity to thrive there as well. So apparently spiders do play an important role in the biodiversity of many plant ecosystems. An article on this was published by the In Defense of Plants journal below.
"How Spiders Increase Plant Diversity"
Image - InDefenseofPlants.com
"It's the shift in diet itself that has ramifications throughout the entire ecosystem in question. Many goldenrod species are highly competitive when left to their own devices. If left untouched, abandoned fields can quickly become a monoculture of goldenrod. That is where the spiders come in. By causing a behavioral shift in their grasshopper prey, the spiders are having indirect effects on plant diversity in these habitats. Because grasshoppers spend more time feeding on goldenrods in the presence of spiders, they knock back some of the competitive advantages of these plants.   
The researchers found that when spiders were present, overall plant diversity increased. This is not because the spiders ate more grasshoppers. Instead, it's because the grasshoppers shifted to a diet of goldenrod, which knocked the goldenrod back just enough to allow other plants to establish. It's not just plant diversity that changed either. Spiders also caused an increase in both solar radiation and nitrogen reaching the soils!   
In knocking back the goldenrod, the habitat became slightly more open and patchy as various plant species of different shapes and sizes gradually established. This allowed more light to reach the soil, thus changing the environment for new seeds to germinate. Also, because goldenrod leaves tend to break down more slowly, they can have significant influences on nutrient cycles within the soil. As a more diverse set of plants establish in these field habitats, the type of leaf litter that falls to the ground changes as well. This resulted in an overall increase in the nitrogen supply to the soil, which also influences plant diversity.   
In total, the mere presence of spiders was enough to set in motion these top-down ecosystem effects. It's not that spiders eat more grasshoppers, it's that they are changing the behavior of grasshoppers in a way that results in a more diverse plant community overall. This is a radically different narrative than what has been observed with examples such as the reintroduction of wolves to the greater Yellowstone ecosystem yet the conclusions are very much the same. Predators have innumerable ecosystem benefits that we simply can't afford to ignore."
(Source)
=========================================
Great News for Biodiversity right ? 😍 Well not so fast! 😬
Three days later after I read that wonderful article from the folks at "In Defense of Plants," who wrote about how these fascinating  insect mechanism interactions which set off change reactions of events which leads to healthier biodiversity within plant community ecosystems, "Science Magazine," then comes out three days later with an article I had seen elsewhere about insect numbers disappearing. Now pay close attention, this was not about extinction, but population numbers dropping dramatically. This is something I've seriously wondered about with regards not only insects, but many lifeforms and even touched on this very subject once before in this post here where I noticed insect disappearances in my mother's yard where we do not used ANY harsh chemical pesticdes of any kind, including synthetic fertilizers. One outstanding strange thing that is now obvious is the total absence of the native red harvester ants in her backyard which is a third of an acre. Since I can remember as a kid since 1961, we always had 15 or 20 red harvester ant colonies for which my folks always tried to spray and eradicate with never any success. Prior to leaving the USA and moving here to Sweden in May 2006, there were only two actual colonies that I knew of. It caught my attention then and I went around and counted. Now there are none. There are also none across the street where there has always been a very wide dirt strip. Even up on Rattlesnake mountain at the end of the street I found none, only black harvester ants. But I also notived that the sow or pill bugs were very limited and even earwigs were gone. Again, we never spray with the synthetics:
Extinction Phenomena: Should We be looking under Boards and Rocks too ?
There are also other loss of living lifeforms I've wondered about over the last few years like mycorrhizal fungi. Many would think the microbiological world is safely tucked away in a hidden darkness and in numbers so incomprehensible that it would make it impossible for the microbiome to be harmed. Really ??? I also wrote another piece about the disappearance of a certain specific mycorrhizal fungi truffles I use to collect in and around Anza California where I use to live. For two decades every Spring  & Summer (after the first arrival of monsonnal thunderstorms) I would collect mature truffles for their spores to inoculate plants I grew on my acreage and restoration projects I involved myself with locally. Suddenly in 2001 I could no longer find them. I had also previously begun to notice pine and oak trees dying off in the same location before the fungi truffle disappearance. Now large numbers of those pines are gone except for a few and the oaks that still remain are sickly or dead, even Scrub Oaks. So I wrote about that experience as well:
What happens to Earth's Mycorrhizal Community when their Hosts fail above ground ?           


The article below is a bit more spooky. This has happened over time, but so slowly that most people "take no note." Wow, where have we heard that before ? This scenario reminds me of the story about the frog put in a pan of water where a low fire is slowly heating up the water. By the time the frog realizes what has happened it's too late. His goose is cooked. That's about where we are now and that is what the researchers are finding in the article below. It's not so much lack of biodiversity or extinction, but a huge loss of bioabundance.


PAUL VAN HOOF/MINDEN PICTURES

JEF MEUL/NIS/MINDEN Pictures/National Geographic Creative
Fireflies, like these shown above in a forest in the Netherlands, have disappeared from some areas in North America and Europe where they were once abundant. The photograph to the right shows Hover flies, which are often mistaken for bees or wasps, are important pollinators. Their numbers have also plummeted in the nature reserves of Germany. Now take very special note here, I said Nature Reserves, not urban landscapes or rural agricultural areas where you would expect such a scenario to be the cause. Sounds like designating something a National Monument is a wasted endeavour which only serves to sugar coat and smokescreen to the public that all is well in the world when all is not well. With all the angry eco-protest marches happening everywhere, we are forced to swallow a sort of religous blind faith-based chant which goes like, "There is peace, there is peace, when they is no peace." The article below starts off by telling a story of the good'ol days when you drove your car and masses of bugs covered the bumper, grill and especially windscreen (shield) of your automobile. For me the worst place for buggageddon was always driving down into the Imperial Valley's industrial agricultural landscape. The insaneness of having to periodically stop at a gas station and cleaning my windscreen a couple of times before I even arrived at my ultimate destination of El Centro was annoying. But now many have noticed the lack of bugs on the windscreen and so have I the last couple of times we have gone through there. So what gives ? What's changed ? That's the whole point of this article.

Where Have All the Insects Gone ? 
Of the scant records that do exist, many come from amateur naturalists, whether butterfly collectors or bird watchers. Now, a new set of long-term data is coming to light, this time from a dedicated group of mostly amateur entomologists who have tracked insect abundance at more than 100 nature reserves in western Europe since the 1980s.     
Over that time the group, the Krefeld Entomological Society, has seen the yearly insect catches fluctuate, as expected. But in 2013 they spotted something alarming. When they returned to one of their earliest trapping sites from 1989, the total mass of their catch had fallen by nearly 80%. Perhaps it was a particularly bad year, they thought, so they set up the traps again in 2014. The numbers were just as low. Through more direct comparisons, the group—which had preserved thousands of samples over 3 decades—found dramatic declines across more than a dozen other sites.
Many losses reverberate up the food chain. "If you're an insect-eating bird living in that area, four-fifths of your food is gone in the last quarter-century, which is staggering," says Dave Goulson, an ecologist at the University of Sussex in the United Kingdom, who is working with the Krefeld group to analyze and publish some of the data. "One almost hopes that it's not representative—that it's some strange artifact."   
No one knows how broadly representative the data are of trends elsewhere. But the specificity of the observations offers a unique window into the state of some of the planet's less appreciated species. Germany's "Red List" of endangered insects doesn't look alarming at first glance, says Sorg, who curates the Krefeld society's extensive collection of insect specimens. Few species are listed as extinct because they are still found in one or two sites. But that obscures the fact that many have disappeared from large areas where they were once common. Across Germany, only three bumble bee species have vanished, but the Krefeld region has lost more than half the two dozen bumble bee species that society members documented early in the 20th century.  
Members of the Krefeld society have been observing, recording, and collecting insects from the region—and around the world—since 1905. Some of the roughly 50 members—including teachers, telecommunication technicians, and a book publisher—have become world experts on their favorite insects. Siegfried Cymorek, for instance, who was active in the society from the 1950s through the 1980s, never completed high school. He was drafted into the army as a teenager, and after the war he worked in the wood-protection division at a local chemical plant. But because of his extensive knowledge of wood-boring beetles, the Swiss Federal Institute of Technology in Zurich awarded him an honorary doctorate in 1979. Over the years, members have written more than 2000 publications on insect taxonomy, ecology, and behavior. 
The society's headquarters is a former school in the center of Krefeld, an industrial town on the banks of the Rhine that was once famous for producing silk. Disused classrooms store more than a million insect specimens individually pinned and named in display cases. Most were collected nearby, but some come from more exotic locales. Among them are those from the collection of a local priest, an active member in the 1940s and 1950s, who persuaded colleagues at mission stations around the world to send him specimens. (The society's collection and archive are under historical preservation protection.)

Weighty disappearances 
The mass of insects collected by monitoring traps in the Orbroicher Bruch nature reserve in northwest Germany dropped by 78% in 24 years.
(GRAPHIC) G. GRULLÓN/SCIENCE; (DATA) M. SORG ET AL.,
MITTEILUNGEN AUS DEM ENTOMOLOGISCHEN VEREIN KREFELD
1, 1–5 (2013) © 2013 ENTOMOLOGISCHER VEREIN KREFELD

Tens of millions more insects float in carefully labeled bottles of alcohol—the yield from the society's monitoring projects in nature reserves around the region. The reserves, set aside for their local ecological value, are not pristine wilderness but "seminatural" habitats, such as former hay meadows, full of wildflowers, birds, small mammals—and insects. Some even include parts of agricultural fields, which farmers are free to farm with conventional methods. Heinz Schwan, a retired chemist and longtime society member who has weighed thousands of trap samples, says the society began collecting long-term records of insect abundance partly by chance. In the late 1970s and early 1980s, local authorities asked the group for help evaluating how different strategies for managing the reserves affected insect populations and diversity.     
The members monitored each site only once every few years, but they set up identical insect traps in the same place each time to ensure clean comparisons. Because commercially available traps vary in ways that affect the catch, the group makes their own. Named for the Swedish entomologist René Malaise, who developed the basic design in the 1930s, each trap resembles a floating tent. Black mesh fabric forms the base, topped by a tent of white fabric and, at the summit, a collection container—a plastic jar with an opening into another jar of alcohol. Insects trapped in the fabric fly up to the jar, where the vapors gradually inebriate them and they fall into the alcohol. The traps collect mainly species that fly a meter or so above the ground. For people who worry that the traps themselves might deplete insect populations, Sorg notes that each trap catches just a few grams per day—equivalent to the daily diet of a shrew.
Sorg says society members saved all the samples because even in the 1980s they recognized that each represented a snapshot of potentially intriguing insect populations. "We found it fascinating—despite the fact that in 1982 the term ‘biodiversity' barely existed," he says. Many samples have not yet been sorted and cataloged—a painstaking labor of love done with tweezers and a microscope. Nor have the group's full findings been published. But some of the data are emerging piecemeal in talks by society members and at a hearing at the German Bundestag, the national parliament, and they are unsettling.   
Beyond the striking drop in overall insect biomass, the data point to losses in overlooked groups for which almost no one has kept records. In the Krefeld data, hover flies—important pollinators often mistaken for bees—show a particularly steep decline. In 1989, the group's traps in one reserve collected 17,291 hover flies from 143 species. In 2014, at the same locations, they found only 2737 individuals from 104 species.   
Since their initial findings in 2013, the group has installed more traps each year. Working with researchers at several universities, society members are looking for correlations with weather, changes in vegetation, and other factors. No simple cause has yet emerged. Even in reserves where plant diversity and abundance have improved, Sorg says, "the insect numbers still plunged."    
A Weather Station for Biodiversity
Researchers in Germany hope to develop a set of automated sensors that will monitor the abundance and diversity of plants, animals, and fungi with the help of pattern recognition and DNA and chemical analysis.
V.ALTOUNIAN/SCIENCE

Changes in land use surrounding the reserves are probably playing a role. "We've lost huge amounts of habitat, which has certainly contributed to all these declines," Goulson says. "If we turn all the seminatural habitats to wheat and cornfields, then there will be virtually no life in those fields." As fields expand and hedgerows disappear, the isolated islands of habitat left can support fewer species. Increased fertilizer on remaining grazing lands favors grasses over the diverse wildflowers that many insects prefer. And when development replaces countryside, streets and buildings generate light pollution that leads nocturnal insects astray and interrupts their mating.  
 
Neonicotinoid pesticides, already implicated in the widespread crash of bee populations, are another prime suspect. Introduced in the 1980s, they are now the world's most popular insecticides, initially viewed as relatively benign because they are often applied directly to seeds rather than sprayed. But because they are water soluble, they don't stay put in the fields where they are used. Goulson and his colleagues reported in 2015 that nectar and pollen from wildflowers next to treated fields can have higher concentrations of neonicotinoids than the crop plants. Although initial safety studies showed that allowable levels of the compounds didn't kill honey bees directly, they do affect the insects' abilities to navigate and communicate, according to later research. Researchers found similar effects in wild solitary bees and bumble bees.  
Less is known about how those chemicals affect other insects, but new studies of parasitoid wasps suggest those effects could be significant. Those solitary wasps play multiple roles in ecosystems—as pollinators, predators of other insects, and prey for larger animals. A team from the University of Regensburg in Germany reported in Scientific Reports in February that exposing the wasp Nasonia vitripennis to just 1 nanogram of one common neonicotinoid cut mating rates by more than half and decreased females' ability to find hosts. "It's as if the [exposed] insect is dead" from a population point of view because it can't produce offspring, says Lars Krogmann, an entomologist at the Stuttgart Natural History Museum in Germany.   
No one can prove that the pesticides are to blame for the decline, however. "There is no data on insecticide levels, especially in nature reserves," Sorg says. The group has tried to find out what kinds of pesticides are used in fields near the reserves, but that has proved difficult, he says. "We simply don't know what the drivers are" in the Krefeld data, Goulson says. "It's not an experiment. It's an observation of this massive decline. The data themselves are strong. Understanding it and knowing what to do about it is difficult."  
© ENTOMOLOGISCHER VEREIN KREFELD
The factors causing trouble for the hover flies, moths, and bumble bees in Germany are probably at work elsewhere, if clean windshields are any indication. Since 1968, scientists at Rothamsted Research, an agricultural research center in Harpenden, U.K., have operated a system of suction traps—12-meter-long suction tubes pointing skyward. Set up in fields to monitor agricultural pests, the traps capture all manner of insects that happen to fly over them; they are "effectively upside-down Hoovers running 24/7, continually sampling the air for migrating insects," says James Bell, who heads the Rothamsted Insect Survey. 
Between 1970 and 2002, the biomass caught in the traps in southern England did not decline significantly. Catches in southern Scotland, however, declined by more than two-thirds during the same period. Bell notes that overall numbers in Scotland were much higher at the start of the study. "It might be that much of the [insect] abundance in southern England had already been lost" by 1970, he says, after the dramatic postwar changes in agriculture and land use.    
The stable catches in southern England are in part due to constant levels of pests such as aphids, which can thrive when their insect predators are removed. Such species can take advantage of a variety of environments, move large distances, and reproduce multiple times per year. Some can even benefit from pesticides because they reproduce quickly enough to develop resistance, whereas their predators decline. "So lots of insects will do great, but the insects that we love may not," Black says.   
Other, more visible creatures may be feeling the effects of the insect losses. Across North America and Europe, species of birds that eat flying insects, such as larks, swallows, and swifts, are in steep decline. Habitat loss certainly plays a role, Nocera says, "but the obvious factor that ties them all together is their diet."   
Some intriguing, although indirect, clues come from a rare ecological treasure: decades' worth of stratified bird droppings. Nocera and his colleagues have been probing disused chimneys across Canada in which chimney swifts have built their nests for generations. From the droppings, he and his colleagues can reconstruct the diets of the birds, which eat almost exclusively insects caught on the wing.   
The layers revealed a striking change in the birds' diets in the 1940s, around the time DDT was introduced. The proportion of beetle remains dropped off, suggesting the birds were eating smaller insects—and getting fewer calories per catch. The proportion of beetle parts increased slightly again after DDT was banned in the 1970s but never reached its earlier levels. The lack of direct data on insect populations is frustrating, Nocera says. "It's all correlative. We know that insect populations could have changed to create the population decline we have now. But we don't have the data, and we never will, because we can't go back in time."   
Sorg and Wägele agree. "We deeply regret that we did not set up more traps 20 or 30 years ago," Sorg says. He and other Krefeld society members are now working with Wägele's group to develop what they wish they had had earlier: a system of automated monitoring stations they hope will combine audio recordings, camera traps, pollen and spore filters, and automated insect traps into a "biodiversity weather station". Instead of tedious manual analysis, they hope to use automated sequencing and genetic barcoding to analyze the insect samples. Such data could help pinpoint what is causing the decline—and where efforts to reverse it might work best.   
Paying attention to what E. O. Wilson calls "the little things that run the world" is worthwhile, Sorg says. "We won't exterminate all insects. That's nonsense. Vertebrates would die out first. But we can cause massive damage to biodiversity—damage that harms us."
(Source: Sciencemag.org & Gretchen Vogel)
Update May 20, 2017: Sithsoniaan Tropical Research Institute
Credit: Chung Yun Tak

Credit: Saskya Van Nouhuys
I'm interjecting this tropical research report here because it is relevant to the importance of insecting leading the way ecosystems are sustained in balance. Using plasticine caterpillar models like this one in the photo above and at right at the Smithsonian's ForestGEO site of Tai Po Kau in Hong Kong, researchers discovered a global pattern of higher predation at low elevations and low latitudes. Clearly what we consider pest insects are those insects thaat eat plants we like in our landscapes, gardens and farms. But we should also acknowledge that there are beneficial natural components which eat such pests. First thing that comes to most people's minds are such predators as birds & anmals, but that is not what these researchers found. Insect predators are the most important abundant predators of pest insects in the wild as this study below found. So when loss of Bioabundance of predatory insects takes place, our goose is cooked and the only real winners in the perverted sense as all the Agro-Chemical & Biotech Industries. As sick & horrific as that sounds, it's nevertheless the  truth.
Predators are Real Lowlifes
Insects drove the trend, not mammals or birds. “As someone who has studied insect biodiversity in the tropics for most of my life, I wasn’t surprised that insects were responsible for most of the predation observed,” said Yves Basset, leader of the ForestGEO Arthropod Initiative at STRI.   
The team put out almost 3,000 model caterpillars for four to 18 days at 31 different sites from Australia to Greenland at different altitudes, from zero to 2,100 meters above sea level. Based on characteristic marks left by predators in the clay, they could tell whether the models were attacked by birds, mammals or insects.
http://www.stri.si.edu
This should be a wake up call, but most likely it will generally fall on deaf ears. Mere handfulls of interested ones will click "Like" on some Enviro-Facebook page, but mostly it will go unnoticed. The average human being hates bugs and buys into the industrial science marketing of  "An only good Bug is a dead Bug." Think back on those RAID commercials. Synthetic Pesticides are incapable of differienting between and good and bad insect. Most don't care. They want bugs gone. Seriously, walk down any Home Depot, Lowes, Hornbach, Bau Haus or other local hardware store and the only viable healthy garden solution they offer is a science-based synthetic toxic option. No instruction or education of ever building a biodiverse system in your garden thru biomimicry. There was a reference to E.O. Wilson at the end of the article. These days everyone seems to want to worship the ground that E.O. Wilson walks on as something hallowed. The 80+ E.O. Wilson, is a Harvard professor of evolutionary biology who made his celebrity claim to fame back in the 1970s with his study of social species in two books, The Insect Societies and Sociobiology. He is internationally acknowledged as "the father of sociobiology" and is the world's leading authority on ants. Hence I can understand why Gretchen Vogel who wrote the article referenced him in the last paragraph where she quotes him as saying "we must pay attention to the little things that run the world." Sure enough in his book, Diversity of Life, E.O. Wilson stated:
“Most life on land depends ultimately on one relationship: the mycorrhiza, the intimate and mutually dependent coexistence of fungi and the roots systems of plants.”
His point of course was that the importance of these beneficial fungi should not be underestimated. So okay, he has some good points on why our understanding of Nature's micro-world should be better. I totally agree. But then at other times he does an about face and turns right around and out of the other corner of his mouth tells the world that Industrial Agriculture's Biotech World is the only thing that can save Nature. In 2011 in an interview in "EarthSky Journal," E.O. Wilson said:

"And within science, this is going to be a century of biology. We are entering an age of synthesis. So many discoveries have been made in biology in the cell, at the molecular level, and on up to the development of organisms." 

"And we need all the biology and all the advances we can find in agriculture, especially. We’re going to have to switch worldwide to dry land agriculture. We don’t have enough water in enough countries to feed all those people and to restore soil to arable condition. So this means that we have to have genetically modified organisms. I’d take that as a given. Some people don’t like the idea. But that’s one of those necessities brought about by the human condition."
Clearly the very thing Wilson here is advocating is the very thing that is killing biodiversity and bioabundance. E.O. Wilson like Bill Nye will never admit that because supporting biotech world is paramont in keeping hold of their science celebrity darling icon status. Bill Nye was once opposed to GMOs, but then one day Monsanto showed him the light. More than likely he was ushered into a back room and explained the facts of life by the good'ol boys club about what he should do to keep that status quo as a celebrity icon if he knew what was healthy for him. Both Wilson and Nye are also staunch advocates of the "Agrument from Poor Design" religious dogma. I use the term religious here because there is nothing scientific about it. It's done more harm to the natural world and held back real world sustainable eco-green technological innovation more than anything else. Both men are also part of the new secular attitude espoused earlier by Edward Abbey who believed mankind is worthless and desperately needs culling if not outright removal. Although both men do not see either of themselves as part of that problem. Nobody questions these science celebrity icons and they should. Unfortunately, E.O. Wilson's and Bill Nye’s intolerant worldview seems to be rubbing off and infecting many of today's Gen-X and Millennials (think of turmoil & uncertainty) which might explain some of the insane chaos which is a common component of today's world.



Well, getting back to insects and the two artcles. A couple years ago Germany (one of the biggest users of palm oil) expressed self-righteous indignation towards Indonesia for cutting down their country's rainforests and replacing them with palm oil plantations. The Indonesian leader also fired back exposing Germany for destroying 70% of Germany's original forests. Sure enough that is true. What forests that do exist have become industrial forestry plantations, with only those few scattered nature reserves which we spoke of earlier. This is also true of most of industrial Europe including Sweden. This may well account for the drop in not only insects, but also other wildlife. So blame cannot be put squarely on the shoulders of industrial science, but also these science celebrity icons whom they go to bed with figuratively speaking to promote their technology. For all the public shouting and fingerpointing these celebrities do at the average human being for not being eco-green, they themseves are the blind leading the blind. These icons need to be exposed for what they really are. As for the average person, follow the lead recommended by the first article from the "In Defense of Plants" people. Learn how nature works and biomimic that in your own landscape or garden. As far as the bigger picture, this world's leadership (irrespecitive of the ideological worldview) needs to be completely eradicated soon. If that doesn't happen, then nothing will be saved.
Now relax to eleven minutes of Insects and Birds in a Field on a Summer Day (Natural sound meditation)




Sunday, April 2, 2017

Observation, Reflection, Pondering, & Questions unveil how Nature really works

Medical Dictionary Definition of  Periphery
"the outward bounds of something as distinguished from its internal regions or center"
If you've been reading this blog for very long, you know I value having an open minded peripheral view of nature as opposed to the often Tunnel Vision approach many scientific researchers take. I have two examples here of different approaches to research studies and their outcomes which were based on either broad observational viewpoint or a narrow minded tunnel vision approach. I've often had numerous discussions with defenders of the industrial science business model approach to agriculture versus a biodiverse perennial plants and mycorrhizal soil system approach. The response to the observed evidence outdoors based on the reality of how nature maintains and sustains has always been met with, "Your evidence confirming an observation is evidence that your observation is wrong." Well not is so many words, but these are the very people who are religiously hung up on "evidence-based science" and "peer-review." Pure unadulterated blind faith belief in both of these states as an only means at arriving at a truth can be easily debunked by viewing the effects on Nature. Below are the  two contrasting approaches as to how science is done, with the later example being the most universally common ne practiced and the degradation of our Earth's ecosystems are evidence that the first approach should become more well funded.
Scientists follow seeds to solve ecological puzzle
Mice hammer a rare native plant by feasting on its seeds, but their spoliation is human-enabled
Credit: Molly Kuhs

"Scientists Tiffany Knight and Eleanor Pardini in restored dune habitat at the Point Reyes National Seashore in Marin County, California. Plants native to the area, such as the Tidestrom's lupines that surround them, are adapted to stiff winds, dune blowouts and winter storms at sea."

Credit: Eleanor Pardini
Up in Marin County in northern California at the Abbotts Lagoon in Point Reyes National Seashore, there is a sand dune ecosystem where a rare low growing spreading flower called, Tidestrom's Lupine (native), is being eaten from existence a, Deer Mouse Peromyscus maniculatus (also native), but which also prefers the seeds of another more common larger Lupine called, Chamisso Bush Lupine (again also native). The basic dilemma here was that there was a decline in the rare Lupine populations around these sand dunes. The situation was so dire that realistically it was thought they would go extinct. The mouse was eating both types of Lupine seeds and even preferred the larger more common Bush Lupine seeds, but the smaller low growing Lupine was still the one that was declining. But they eventually determined that Humans were in actuality the enablers of the imbalance that had taken place between various NATIVE components of the ecosystem. That was the interesting part. Incredibly, this was not one of those textbook cases of some foreign exotic plant or animal wreaking havoc on some California ecosystem. True, a European Beachgrass was utilized in an attempt to stabilize the sand dune, but they could well have chosen any native California bunch grass with the same imbalanced result. These were native organisms out of balance struggling within a familiar ecosystem for which as the researchers explained, "the spoliation was human enabled." One native California organism pitted against another. What I love most about this article were the well thought out questions that drove the researchers which the author published at the beginning:

"What bothers a plant? Why are some plants rare while others are common? Are the rare plants simply adapted to rare habitat or are they losing the competition for habitat? Are their populations small but stable, or are they dwindling?   
And how can scientists usefully frame these questions when there are so many possible variables? 
One way is to compare related — or congeneric — species that have many traits in common but also differ in some ways. This clears out enough underbrush that carefully designed experiments can provide answers."
Washington State University St Louis: Scientists follow seeds to solve ecological puzzle

Credit: Eleanor Pardini

"The common Chamisso bush lupine holds its seed pods above the ground or hides them in the middle of its shrubbery. This lupine’s architecture makes its seeds less vulnerable to predation while they remain on the plant."

Credit: Steve Kroiss
This little native Deer Mouse at right was at first glance the trouble maker. In the old days the rule of thumb from the Scientific Orthodoxy would be to recommend without question a science-based synthetic pesticide to eradicate the Mouse. Problem solved! But was this little mouse really at fault ? Nature is loaded with all manner of living things which do not think, reason and scheme like humans. They are however incredibly sophisticated complex biological machines being run and directed by an informational communications network (DNA) & complex sensory system which responds to environmental cues. The researchers found that some time back a human decision was made by the Park Service to prevent dune erosion by planting a type of beachgrass. Apparently there were a combination of domino effects that went negative. It would seem the beachgrass provided safe haven for the little Deer Mouse who felt safe and embolden to venture out and eat the seeds of the rare Tidestrom's Lupine. But two years into the study the Park Service then removed the beachgrass to save another bird's (Plover) nesting site. Here is a description of what happened next:
The removal of beachgrass has already taken the pressure off the rare lupine. There are two reasons for this, Pardini said. One is that Tidestrom’s lupine is adapted to a disturbed habitat and needs wind and dune blowouts to thrive. The second is that with the beachgrass gone, mice have to take bigger risks to take lupine seeds.   
“Tidestrom’s lupine is popping up like crazy in the restored areas,” Pardini said. “The seed germination rate is very high, survival rate is extremely high, it’s reaching high densities in the restored zones, the plants are huge and they’re extremely fertile.”
(Read the entire Article HERE)
You can read the rest of the entire article on your own. It's loaded with lots of interesting reading. But now lets take another look at the second approach to research which at the beginning on the surface appears to be a faster way to shortcuts, but in reality holds back valuable strides forward. Especially when urgency is the motivating factor.

Fighting World Hunger: Robotics Aid in the Study of Corn and Drought Tolerance
Credit: Gui DeSouza

Credit: Gui DeSouza
This next study is an old one. This ongoing insistence that only biotechs can find the answers to drought resistence in preparation for future climate change. But in this case it takes an unnecessary course of direction. The attempt here is to get a little too cute with electronics. Robotics right now is a hot topic and all industries are looking at them to save time and money. The article and video they provide starts out justifying the research by the all too common cache phrase, "In the fight against world hunger . . "  They then continue on with numbers and stats along with a dire prophetic warning of time running out. 
"Developing drought tolerant corn that makes efficient use of available water will be vital to sustain the estimated 9 billion global population by 2050."

So the message here is that developing drought resistent corn crop varieties can only be accomplished with robotics facilitated by a $20 million grant and hopefully something positive will just happen by 2050 to save the world from hunger ? By contrast most of the early mycorrhizal research decades ago was done outdoors in a natural environmental setting. Being outdoors provided Mycologists and other researchers to observe the reality of how nature really works. Scientists (Mycologists) watched, observed, pondered and formulated numerous questions not just on the fungi alone, but their interaction with every other living thing around them. What has always beens a puzzle to me is why the mycorrhizal soil management systems approach has never been as well funded as the industrial science approach to bland boring monocultures ? But that's not really what industrial science is all about. Their goals are entirely different from tradtional study and research, take a look at a quote mentioned in the video at time spot 1:08:
"We're trying to automate as much as we can. We're trying to install networking so we can do everything from the Lab -- we can remotely log into the devices, collect images, download the image and all that so that we don't have to go to the field as much."
University of Missouri: Fighting World Hunger: Robotics Aid in the Study of Corn and Drought Tolerance
Image - Mycorrhizal Applications Inc

The industrial approach is all about what they imagine to be shortcuts provided by this robot which might mean greater returns on investment. The study on the mouse vrs the Lupine had no such monetary funding or future $$$ ambitions to motivate those researchers involved. But seriously, Robots to identify heat stress in plants ??? Question: Does the average farmer really need a robot to tell them which corn plants are stressed and which ones are doing fine ? Look at the pic above. All this continual talk of Biotech research work going into finding that right drought resistence gene has always been a complete waste of time. There has been for 1000s of countless years a tool Nature has always had available for dealing with drought resistence in plants. That would be the various varieties of mycorrhizal fungi who have a vested interest in the health and welfare of their hosts. So why the high techie robots ? Yes, in these modern times, fungi are probably not as sexy and sophisticated as modern technological advancements like robots, but their function as mutualistic partners with crop plants is far superior to anything biotech scientists or robotics engineers could ever do to problem solve quick solutions just around the corner, let alone a decade or two away. Our planet Earth doesn't have a decade or two. Pursuit of a mycorrhizal approach is in reality the real shortcut. The biggest roadblock is that a genetically modified seed comes with a lot of required aftermarket baggage ($£€) like a plethora of synthetic fertilizer inputs, herbicides, insecticides, fungicides, miticides, etc which do nothing more than provide the promise of obscene profit for a handful of giant chemical corporate entites. Now to be completely fair here, I'm sure this Associate Professor, Gui DeSouza, and his intelligent engineers are conscientious people and know their electronic gadegtry stuff very well. But modern Science's biggest problem is wanting to do almost everything inside of some Laboratory. Much of today's Science left the outdoors decades ago. That's not to say that there are no scientists today who no longer practice outdoor research, because many still do. The researchers at the Dune site proved this to be true. But I highly doubt any of these industrially motivated guys have much understanding of underground soil mycorrhizal networks and their relationship with any plant let alone crop plants. 


The direction the prevailing industrial Scientific Orthodoxy is to white wash the bad news to the public by their propagandizing which is almost identical to the words of warning by Patrick Henry who himself was quoting from a biblical text of (Ezekiel 13:10) where false prophets were suckering the common people into believe the coming dire situation was really not all that bad. Our present dire reality is that this world doesn't have until 2050 to find solutions. There's no luxury of time to piddle around, beg for funding for pet projects and problem solve for profit. Ecosystems are deteriorating faster than ever before and have been for some decades. The picture I often use above from the University of Florida and Mycorrhizal Applications Inc testing the product MycoApply with multiple blend of fungi species points a glaring spotlight on how this drought & heat stress resistence can be dealt with in one season on many corn (& other crop) varieties that they already know will grow well in hot climates. It also exposes what a real propaganda sham this biotech search for that illusive mysterious drought resistent gene really is about. If their goal really was about feeding the world & food security, the mycorrhizal approach would be snapped up instantly. What this is really all about, is Industrial Agriculture in bed with Industrial Science trying desperately to keep a status quo monopoly on agribusiness. As that is the case, they are stubbornly committed to a tunnel vision industrial answer approach and not any peripheral view of anything outside of their narrow minded small inner circle of elitest ideas. 

Speaking of Sand Dunes

The beauty of the animal, plant & bird dilemma at the Sand Dune Project was that these researchers did spend quite a bit of time outdoors for four years. They also came up with not only great questions one after another based on observations, but also created some beautiful terminology along the way to illustrate and expose the multiple ways humans have managed to screw up the environment even without introducing any invasive exotic non-native species of plants, birds or animals. Expressions like, "subsidized native predators" & "spoliation is human enabled," which fits nicely with Martin Luther King Jr's, "sincere ignorance" & "conscientious stupidity." Take a look at their final thoughts in the Dune/Beachgrass/Mouse/Lupine research:
A Final Twist
"A final twist Ironically, the beachgrass was removed not to help the rare lupine but rather to help the endangered western snowy plover (Charadrius alexandrinus nivosus). Just as the lupine lost germination sites to the grass, the plover lost nesting habitat.   
And both the lupine and the plover suffered from subsidized native predators. In the case of the lupine, the predator is the deer mouse; in the case of the plover, it is the common raven (Corvus corax),   
“Corvid populations have been exploding worldwide since the 1970s,” Pardini said. “You can see it in the Christmas birdcount data. One reason is that they feast on the refuse people provide.   
“So the emerging story about human intervention and the ravens is analogous to the one about the grass and the mice,” she added. In both cases, people are subsidizing a species that is upsetting the balance that once existed between other species: on one hand two lupines, in the other two birds.
The summary sheds light on so many things. Humans have not only subsidized various forms of invasive species which have brought about environmental ruin to many areas of our Earth, but they've also somehow managed to pit one native organism against another unintentionally. Previously most all native things have lived in almost perfect balance for 1000s of years. Suddenly, a form of new freedom promising scientific enlightenment bulls it's way onto the world scene 150+ years ago and we find ourselves as an actual slave to it's death dealing consequences. The beauty of the Lupine/Mouse study on those Northern California sand dunes illustrates how humans can truly unmask and expose the cause and over a long period of time use the powers of observation within peripheral viewpoint of an entire environment, inspire numerous thought provoking questions and come up with a nonsynthetic pesticidal solution for creating back the natural balance again. Giant corporations are easy big targets to blame because of their extraordinary size for expossure. But what really frightens me are all those small to medium size property owners out there who still buy into the rat poison advertisement indoctrination as a first option in arriving at problem correction. Take a rural drive almost anywhere and look how the average property owning citizen lacks the understanding in taking a natural balanced approach to maintaining the ecology of their land. This is the kind of approach that should be easily taught in elementary school through high school (secondary school) long before a student gets to college. Just think of all the unnecessary baggage they wouldn't be lugging with them when they finally do go to a University ? 😵


Dr. Eleanor Pardini's Research Blog



Friday, March 10, 2017

Basic Fundamentals of any successful Ecosystem Restoration starts underground

Understanding just how invasive Tamarisk trees suck the life out of native Fremont Cottonwood ecosystem, may help us in rebuilding all other various types of ecosystems successfully without relapse
Mr Doug Fir's fake Facebook status account created with www.statusclone.com

In almost every discussion I've ever had about ecosystem &/or habitat restoration with various people and groups, the methods &/or techniques discussed have always been (removal = mechanical & toxic chemicals) followed by (solution = selected native nursery grown plants plugged into ground vacated by exotics) and viola it's restored. But of course it's not that easy as can be testified by the fact that they have to continue with numerous follow-up restorations until they feel they have attained a measure of success. Those continued follow-ups are the exact result of almost no one considering inoculating the soil around the plants with a healthy blend of plant specific mycorrhizal inoculum. When I bring this subject up because I usually always get those who aalways insist, "Oh you don't need to do that, because all those good fungal spores are just everywhere in the air." Yeah, maybe way back when ecosystems were more untouched, but not now in our modern times. I've written previously how many of my many years of favourite truffle collection spots have ceased to produce and mainly it came a few years prior to their host's dying. Why did this happen ? I have no idea. But there are a plethora of things scientists in general do not understand despite their putting happy faces stamped on their proposed solutions.

Image - Roeselien Raimond

"The answer my friend is isn't blowing in the wind"

When you look at and deeply ponder any type of weedy infestation within a former healthy native ecosystem which is almost exclusively exotic invasives, it's a pretty good probability that those beneficial fungal mycorrhizal networks most likely don't exist in that soil profile anymore. That's logical since the fungi need a viable specific host in order to actually keep alive and the annual invasive weeds (Ruderals or exotic shrubs & trees) have employed a phytochemical tool coupled with continuous human disturbance (Agriculture, Wildfire, etc), we can pretty much assume a bacterial soil profile has taken it's place. The conventional theory is, disking & blitzing the weed infested area in question with Roundup, then following up with planting a native seed blend version of "Meadow in a Can" isn't going to cut it. You have to restore the underground mycorrhizal soil profile with inoculated perennial native plants like Lupines, Poppies, etc for the restoration to succeed. Same is true with restoring native trees & shrubs. Logically, if we observe above ground failure of an entire ecosystem, it's a pretty good bet that something may not be functioning normally under the ground on a microscopic level. In my own experience with planting various pine specimens I collected for my own 3+ acres up in Anza, California, I'd often find that nearby healthy looking scrub oaks really came to life with heavier foliage and larger leaves the following year after planting my inoculated pines with Pisolithus tinctorius. The fungal system which colonized the pines moved underground, also formed a bond with the scrub oaks and truffles appeared in the Spring just outside of the oak's dripline area. What puzzled me was why this specific fungi not been already present  before when large tree areas on the other side of Hamilton Canyon always had them ? Apparently we cannot count on the air being our friend. Take this picture below. A recent discussion on "California Invasive Plant's" Facebook page motivated me to address this subject and finish this post that I originally started as a draft some months back.

Image - R.R. Alexander in 2010

California Poppies - Diamond Valley Reservoir south of Hemet

Image - Jeff Schalau via slco.org
This photograph above is in western Riverside County where I lived and worked for 20+ years. In all that time I lived in western Riverside County California, especially in the early years, this area was one of the richest native California wildflower places I've ever witnessed in my lifetime. But that was then. Today these regions are almost totally gone because of development. Diamond Valley Reservoir never existed in the early days. It was originally called Dominegone Valley. This photo of the wildflowers at Diamond Valley Reservoir above caught my eye because of a couple intriguing elements. On first glance it would appear that the native wildflowers (Poppy & Lupine) have choked out and smothered the Mediterranean invasive Black Mustard (Brassica nigra) as represented by the skeletal remains of last year's annual Mustard crop. But more than likely new Mustard plants have already germinated, still very small and will over take these wildflowers in another month. This photo on the right is Yellow Starthistle (Centaurea solstitialis) and like the non-native Mustard is a non-mycorrhizal annual from elsewhere. Most of the other annual invasives are also non-mycorrhizal and can change the underground soil makeup from a mycorrhizal system to a bacterial system which favours ruderal weeds. Where I have observed Star Thistle in a population explosion scenario is on a landscape which has been mechanically disked or burned over multiple times killing native hosts to mycorrhizal fungi. In that instance they will form entirely pure stands of mixed non-mycorrhizal invasive annual plants. At that point the native plants will have a tougher time coming back or maybe never gaining back a foothold without human intervention. But here is where talk and planning of restoring any type of native ecosystem should always include a quality multispecies blended mycorrhizal inoculum. But this subject in discussion is almost never heard. Take this study below about suppressing Star Thistle:
Reduced mycorrhizal responsiveness leads to increased competitive tolerance in an invasive exotic plant
After acknowledging and providing info on how Star Thistle grows unsuccessfully where soils are Vascular Arbuscular Mycorrhizal (VAM) coupled with the presence of perennial bunchgrass Stipa pulchra, take note in the later part of this sentence in the first bullet point under the Summary:
" . . , although this remains poorly studied."
Now notice this other study on how invasive Black Mustard (Brassica nigra) has been shown to change soil microbial dynamics by suppressing mycorrhizal fungi and changing the underground system to a bacterial one and take a look at this last sentence:
The invasive plant, Brassica nigra, degrades local mycorrhizas across a wide geographical landscape
"There is a need for additional research for more informed agricultural decisions over large spatial scales to avoid potential negative impacts of members of the Brassicaceae on native plant communities."
Here is yet another example study done on a different European invasive called Garlic Mustard (Alliaria petiolata) which has invaded North American forests suppressing mycorrhizal networks which have effect all hardwood seedlings. 
Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms

"Nevertheless, experimental data on species-level impacts of exotic plants are still limited."

"Further research in these directions is needed to better understand the effects of this invader on natural ecosystems and the mechanisms involved."
Finally, moving away from non-mycorrhizal ruderal weeds and looking at ability of an aggressive non-native tree, Tamarisk, to change underground soil biological mechanisms, here is the research on how invasive Tamarisks suppress mycorrhizal connections for Freemont Cottonwoods along aquatic habitats. Notice some of the same wording of where little is known and more study on the subject must be researched. 

Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods

" . . . yet our understanding of this mechanism's role in exotic species invasion is still in its infancy."
This next link from the United Nations agricultural department get's to the heart of the matter in utilizing Endo & Ecto Mycorrhizal fungi in restoration projects regarding cottonwoods & willows with regards riparian habitats high in soil salinity, especially where massive invasive of Tamarisks have exacerbated the problem to higher salinity levels. They recommended two types of mycorrhizal fungi, Hebeloma crustuliniforme and Paxillus involutus, which have the best qualities of eliminating the negative effects of high salinity in soil. But once again, take special note of the disclaimer they have on more research needed.
United Nations: Forestry Department - Cottonwoods & Willows
" Although the current data are very fragmentary, they suggest that inclusion of mycorrhizal management in reclamation strategies of salinity affected land may increase the success of such measures. It is obvious that more information is needed on the interaction and possible ameliorative influence of mycorrhizae for poplar under salt stress."
Photo - Michael Wood & MykoWeb

Again, in almost every single study I've ever read and or researched, you'll notice in the concluding comments where they admit how little effort has been put forth into investigation of mycorrhizal fungal research as much as Scientists has been obsessed with putting more focussed resources into studying those negative microbial elements such as pathogenic fungi Fusarium oxysporum which they admit has been researched for over 100 years. But why ??? Because there is far more money in the continual fight against pathogens with science-based synthetic toxins year after year, than creating an ecological equilibrium which is perpetually sustainable. Any Tamarisk eradication project I've ever seen is mostly about mere removal. That's great, but you need to replace with natives which provide an ongoing mycorrhizal (ecto & endo) soil system. Like fungal spores, native riparian tree seeds won't magically blow in on the next wind and heal the system. The system doesn't work as it once did. The misuse and abuse of various science disciplines have reversed engineered ecosystems so badly, that many need a hands on approach. Otherwise the Tamarisk comes back which as I've stated before is job security for some. Clearly from the above links, you can see that many in Science have done the research and revealed how nature really works. But unfortunately that's not the type or kind of Science that rules academia or big business. Why ??? Ever read this quote before:
“It is difficult to get a man to understand something when his salary depends upon his not understanding it.” 
Upton Sinclair
Image - Go.Nature,com

Well, they can make the determination to do research

 & inform mankind about how Nature really works.
Or yield to the demands of your Corporate employers.

Like the Hebeloma crustuliniforme mycorrhizal fungi referenced in the Cottonwood vrs Tamarisk research paper, another mycorrhizae, the Paxillus involutus, also forms ectomycorrhizal relationships with a broad range of riparian tree species and not just cottonwoods. According to that research, if there are healthy populations of these ectomycorrhizal fungi in present within Fremont Cottonwood groves, the Tamarisk apparently has a tougher time dominating.  There are clearly multiple benefits from these symbiosis as the fungul partners reduces their host's intake of heavy metals, high soil salinity and actually increase their host's resistance to the pathogen fungus like Fusarium oxysporum. These and other important varieties fungi and beneficial bacteria need to be employed within the blueprints of any riparian restoration planning.  




Tamarisk Control at Coachella Valley Preserve, Southern California
"Most areas were cut by hand, thereby selectively cutting out the tamarisk while leaving the native shrubs unharmed. Only a 7.5 acre (3 ha) section that was heavily infested (> 95%) was cleared using a bulldozer." "In the 7.5 acres (3 ha) that was bulldozed, natives established much more slowly than in the hand-cleared areas."   
"In the 7.5 acres (3 ha) that was bulldozed, natives established much more slowly than in the hand-cleared areas."
This quote from the article is fascinating. So areas cleared in a large scale mechanized way by bulldozers in the heavier infested area with large trees provided a clean slate upon which to rebuild and restore native vegetation, but it recovered more slowly compared to other area cleared by hand. An area cleared by hand would be more carefully methodical and surgical in it's approach to not disturb other native shrubs. This faster recovery of the later site makes sense because no matter how unseen mycorrhizal networks are to the naked human eye, they never the less do exist under the ground. This same phenomena of hand removal vrs mechanized on this project was also reported and commented upon by the Angeles Chapter of the Sierra Club. But beyond the acknowledgement of the outcome (mechanized removal vrs hand tool removal), not one of the Authors commented on improving techniques for restoration through biomimicry by utilizing a surgical proceedure of hand tool clearing as opposed to using big machinery and stripping eveything of the surface of the land. Clearly mechanical stripping completely destroys the mycorrhizal grid underground and it takes plants much longer to establish themselves. It was also interesting about the revitalized Spring reappearing mere hours after Tamarisk removal.
"A Spring Reflows"
"Remarkably, the spring in Thousand Palms Canyon began flowing again for the first time in years just hours after the first large tamarisk cutting effort there. Revegetation of all the cleared areas occurred quickly and inexpensively. Seeds were collected from nearby shrubs and trees and strewn onto the cleared areas after the tamarisk was removed. In the area that was bulldozed, natives established much more slowly than in the hand-cleared areas. Native inkweed, saltbush, quailbush, and alkali goldenbush are now growing in dry areas, and the desert fan palms, willows, cottonwoods, and common reed are well-established in wet areas."
Sierra Club: Persistence and herbicide eradicate thirsty tamarisk (2005)
Some major roadblocks to  Tamarisk eradication and native Riparian plant restoration
Photo - U.S. Geological Survey
There has been some controversy lately with some eco-groups who now say they don't want Tamarisk removed along the Colorado River because they insist that the trees now provide nesting habitat to the endangered Willow Flycatcher. Originally this bird was in trouble because the Tamarisk invasion crowded out their prefered nesting habitat (dense willow bosques) within riparian ecosystems, the willow & Cottonwood forests. This appears to have changed as some Flycatchers have adapted to nesting in Tamarisks. It should also be noted that these Flycatchers also will nest in other types of dense vegetation as you can google and see for yourself.

Robert Browman/Albuquerque Journal (2013)

Image - Cornell Lab
The picture above is known as a Riparian Bosque ecosystem in New Mexico which generally in the dry desertlands in the Southwest incorporate Fremont Cottonwoods, Willows and Velvet Mesquite. Bosque is Spanish for woodlands. Bosques Forests are generally a gallery of native riparian trees found along permanent water courses or where water is close to the surface even if unseen. Many Bosques have been destroyed in the early days because of the rich bottomlands they once inhabited for which agricultural business interests who coveted those nutrient rich floodplains took them over. The term 'Bosque' will mean something different for everyone. Many business leaders will view them as worthless impenetrable brush or scrub barriers to their various business schemes (sand mining, agriculture, housing or country club development, etc). Others who are more ecologically minded want them preserved in keeping that dense understory laberynthine wildness intact much like it was with the old Grizzly bear mazes in coastal riparian woodlands of times past in California that early Spanish explorers may have stumbled upon and wrote about. Bosques are structured in the deserts with willows being adjacent to the wetter areas (river banks, sand bars, etc), then huge majestic Cottonwoods, Box Elders, Arizona Ash (possibly Arizona Sycamores) and finally on the fringes away from the river an extensive Mesquite woodland and all of it mutually cooperating to manage these regions which are flood prone and holding the system together. Interestingly, riparian trees are both endo & ecto mycorrhizal and work exceptionally well as a water shunts for transporting water away from the actual river water source through the mycorrhizal network to farther ecosystem plants away from rivers and streams. Another important reason for native riparian habitats to be restored properly as opposed to simple eradication. 

Jay Calderon The Desert Sun
Back in the days of the old west, the pioneers came along and misused and abused the habitats by their various agricultural schemes in stripping the land of vegetation for wide spread farming. When the normal seasonal flooding came along it caused terrible erosion problems and/or ruined crops. Further disastrous decision making (science-based for the times) brought in the infamous Tamarisk and Arundo (type of cane bamboo) to hold together the river and stream banks which became badly eroded. Much like the photo here of the New River near Calipatria in the Imperial Valley. Later dams and reservoirs were constructed to hold back floodwaters and this too helped eliminate the Cottonwoods and willows by stopping the natural flooding cycles which are important to riparian woodlands or forests reseeding themselves. This flood elimination also facilitated the aggressive invasiveness of the Tamarisk which has taken over most all riparian woodlands in many areas of the Southwestern United States. It was then that Tamarisk invaded and created the present monopoly foothold by chemically changing the soil profile which disrupted the mycorrhizal mutualism. Restoration Projects have to deal with this change in soil profile or the time spent is wasted. Some people and organizations like the Center for Biological Diversity are getting in the way of responsible entomological biological controls, such as the introduction of the Tamarisk defoliating beetle which has had great successs in many areas. Their reasoning is that while Tamarisk originally destroyed nesting habitat for Willow Flycatchers, these birds are now using them for nesting sites. Frankly, if you google Willow flycatcher nests, you'll find the birds do nest in a variety of healthy thick vegetation. I'd much rather have they and other birds nesting in restored Fremont Cottonwoods and Willows ecosystems, than in invasive soil salt infusing Tamarisks systems.
Lawsuit Filed to Save Endangered Southwestern Songbird From Habitat Destruction Caused by Invasive Beetles
Feds nix bugs for tamarisk control on Colorado River
Some references on successful restoration and other observations
One of the most outstanding anomalies from removal to me was the response of the long dried up Spring at the 1000 Palms Canyon Oasis reappearing and flowing on the surface again just mere hours after Tamarisk removal. There has been some intellectual criticism by those wanting the Tamarisk to be left alone arguing that native riparian vegetation also creates evapotranspiration just like Tamarisk. So ??? Nobody would dispute that, but clearly the Tamarisks do suck down more water because the native vegetation which has replaced them still allows these springs to flow freely. It's a given that any riparian plant ecosystem with trees would evapotranspirate, but clearly not as bad as a massive Tamarisk infestation. In this age of dwindling fresh water supplies, why would hydrologists everywhere not be looking at this ? Remember what was observed by the 1000 Palms Oasis Tamarisk removal site ? Springs flowed again within hours of removal. The native vegetaton never suppressed the Spring and now even the various native critters can all benefit as a result of surface waterflow. Major win win all around for everyone and everything. Where have Roger C. Bales (UC Merced) & Michael Goulden (UC Irvine) been all this time when we really needed them ??? 🙄

Image .Gifloop 2011
"Remarkably, the spring in Thousand Palms Canyon began flowing again for the first time in years just hours after the first large tamarisk cutting effort there."
Okay, the photo GIF above is not the actual 1000 Palms Canyon Oasis spring referenced in those articles. I merely used it here for an illustrative purpose. Clearly however, Tamarisk do use massive amounts of water when compared to other native vegetation as evidenced by this restoration program's outcome. That's not say riparian trees don't use water, they do. But their effect is not as dramatic on the ecosystem. Below is a link to the NASA website's Multimedia Invasive Species page where they use various animations to illustrate this tree's aggressive ability by means of a deepermassive root infrstructure and phytochemical warefare to outcompete the natives and eventually creating an almost entirely Tamarisk monoculture. No room for left for other plant biodiversity. Apparently this goes totally unnoticed by the Center of Biological Diversity who now wish to coddle and cuddle this plant.


Credit . National Park Service
"Experts estimate that one large tamarisk plant has the potential to absorb up to 200 gallons of water per day – that’s twice the amount the average person uses in the same timeframe."
Credit: NASA
Wow, 200 gallons of water per day ? Well, let's compare that with a couple of native plants which are often heavily demonized in Texas by the Cattlemen's Association. These would be Mesquite and Ashe Juniper. Both of these shrubby trees are natives, not invasives, but labeled invasive noxious weeds by those with a vested interest in something that provides a living like grasslands. In this case grasslands are the desired plant community. 
Arizona Daily Independent

"Mesquite trees, for example, have lateral root systems extending up to 50 feet from the tree, greatly increasing their ability to absorb available moisture. A mesquite trees eight- to 12-feet tall can consume 20 gallons of water per day; ten such mesquites can use as much water in one day as one Texan does."
Interesting. So compared to a Tamarisk tree, a Mesquite tree uses only 20 gallons of water per day as compared to 200 gallons per day. And apparently 10 Mesquite trees suck 200 gallons per day just like your average Texan. Here is another demonized tree, the Ashe Juniper. Like the Mesquite, it too is a native to Texas.


"A large juniper can consume 40 gallons of water per day during the midsummer with moderate soil moisture. Six junipers, then, use about as much as one Texan does daily."
Interesting again, but of course this tree is said to use 40 gallons of water per day. It takes six of them to equal one Texan whom like the Tamarisk consumes 200 gallons per day. Seriously though, I would have guessed that the Juniper would be using less water than the mesquite tree. But there is an interesting reason as to why these two trees are being demonized below. Cattle Ranchers only want grasslands for their personal business interests to thrive. Take a look below from the same website where this info came from and their reasoning.

Image - Cedar Eaters of Texas
Junipers have a deep root structure and a dense mat of fibrous roots near the soil surface that allow them to absorb moisture from the driest of soils, to the detriment of grasses, creeks and springs. Mesquite and cedar have no ability to conserve water and will throw off  what ever amounts they absorb. Other trees conserve and limit their water usage during the heat of the day, controlling their water loss or output.
(Source) 

Now the only thing I'm walking away with here in the reading this article is that probably both Tamarisk and Texans are what really need to be eradicated. Okay I'm kidding. Well, at least on the part about Texans😉. Again, the link above under the NASA photo of the Tamarisk tree along with it's critique on Tamarisk water usage, also provides good animation of just how aggressive the evapotranspiration of Tamarisk is when compared to a Fremont Cottonwood. There are those that will dispute the 200 gallon of water per day figure. For example the other government site, US Geological Survey site disputes the higher figure. Ultimately the scientists behind the research (one way or another) are motivated by personal bias, compensation by those funding their study and they are also prone to mistakes. The Tamarisk removal and restoration of native plants at the 1000 Palms Canyon site in Coachella Valley is a prime example of what is more likely true as a result of the resurfacing of the stream within hours when water sucking Tamarisk was removed. The key here is figuring how much  was used can be easily assessed by the fact the water resurfaced within hours. Had it been many days or a week, then maybe not. This animation below illustrates what happens when the wrong vegetation exists along a river or creek bed and much further away inland from the surface waters.

(Illustrations from Alley and others, 1999)
Diagrams of groundwater movement in relation to streamflow

If you notice the top illustration we see a normal surface flow with the native Fremont Cottonwoods, Willows and Mesquite. Logically the Cottonwoods & Willows would be closest to the water course, while Mesquite would form large Bosque woodlands much further away as a result of a very high water table. No ill effects of dense Mesquite thickets would be experienced if the 20 gallon per day usage per tree were true. Also by means of the capillary action of water from the higher water table far away from the river or stream and actually moving up higher than into the banks and foothills in the floodplain. This would be further enhanced by the hydraulic lift and redistribution of deep subsoil moisture towards those higher surfaces by the native trees and shrubs. I have yet to find any similar phenomena with Tamarisk in any literature. On the other hand if the thickets were invaded by Tamarisk with a higher need for water, then the seond illustration would go into effect with a lowering of the below ground water table. At this point the surface water is not dependent so much on volume of water from the water table as it is forced to give it's reserves from the upstream intake down into the water table causing the surface flow to shrink. In the third picture the stream is totally separated from the water table and in our desert scenario it would be bone dry as the water table would be maybe 3 meters or 10' below the floodplain with river bed surface being dry in a desert scenario. To further counter the new Tamarisk love affair by researchers who now say it's not such a bad guy after all when it comes to being thirsty, here is a video below of how the huge extensive infrastructure of Tamarisk Windbreaks are maintained in the Coachella Valley along I-15 & the Railroad right-of-ways.




Why and how Windbreaks are needed and maintained with massive water flooding in the Coachella Valley
Image - CS Trains.com

Tamarisk Windbreaks along ATSF track right-of-way in
the Coachella Valley between I-10 and Palm springs

I can verify for a fact that there is a massive water wasting by the railroad in irrigating these Tamarisk windbreaks. In actual fact when I was on the ground down by those tracks in the earlt 1980s and walked the right-of-way, I saw those heavy duty irrigation pipes just pouring out water from 2" openings in between each tree. There was no drip system. I further verified this wasteful massive need for water from the Desert Water Agency's, Ronald Baetz, who said massive amounts of water were required for the Tamarisk to heal itself from the constant sand blasting it receives from high intensity winds through Windy Point. He insisted it was the only plant that could rapidly regenerate itself, but I had seen the same thing from various native dune Mesquites out there. It's true, the winds are insane and sands storms are constant here and need for permanent windbreaks can be seen from the picture of this railroad track right of way in the Namibia desert in Africa. But perhaps building a permanent large berm structure from local natural materials (sand, rock, etc) and heavily planting this structure with multiple diverse native desert trees and shrubs is the way to go. I previously wrote about this with regards UCSD's old Mesquite Dune Project.
Lessons From a Mesquite Dune Project

Mesquite Dunes: Practical Solution to Tamarisk Removal & Replacement
Finally in Conclusion
The studies on how Tamarisk changes soil chemistry and disrupts the mycorrhizal mutualism between both endo & ecto mycorrhizae and Fremont Cottonwood (not to mention how all other non-mycorrhizal invasive plants accomplish this) illustrates how important it is for restoration groups to inoculate at time of planting. In a year's time a sterilized riparian habitat could be dense enough to crowd out and kill Tamarisk seedlings which hate shade. 


Image - Stillwater Sciences (2006)
In many extreme cases, total stripping of landscape may be necessary depending on how heavily infested a site is with multiple invasive species. Admittedly, in such cases the mycorrhizal grid will be totally destroyed. Same with heavy ruderal weed thatch needing to be mowed and possibly deep plowed under before planting perennial native wildflowers and grasses back into the landscape. Generous mycorrhizal inoculation will be necessary for the restoration to succeed. Think of the underground and take necessary steps, it'll be worth it. The site above with bare soil is also the same location in the photo below after two years with cottonwood trees. Remember, Fremont Cottonwood will do best with a couple of good species of ectomycorrhizal fungi. It's imperative to do everything right from the start, otherwise you'll most likely need more major followups. Weeding might be necessary the first year, but shouldn't be that bad. Heavy mulch should also be applied. Remember that a dense canopy of thick riparian trees is imperative to shade out any newer Tamarisk seedlings. You can thin out later, remember that this is what nature would naturally do with massive amounts of competition after major flooding during the rainy season.


Stillwater: Bradford Island Riparian and Wetland Restoration

Image - River Partners
The above image shows Fremont Cottonwoods at two years of age. If enough water is present, growth can be rapid. Wet year rainfall restoration would be ideal. The photo at right is a Flycatcher nest within a two year's growth of willows. Hardly a loss if Tamarisk were removed. California Sycamores should also be included. My mother's home in the photo below in the backyard shows incredible height after two years and the amazing thing is that all six trees were six inches tall at time of planting. After that watering was radically tapered off to encourage deep rooting growth. Both the Freemont Cottonwood and California Sycamore would get a huge boost headstart if very long cane poles of both trees were obtained and planted in deep bore holes. The key also is to generously inoculate with a good blend of both endo & ecto mycorrhizal fungi. Especially is it important for Fremont Cottonwoods which are both endo & ecto as are willows. Sycamore is only endomycorrhizal. But the network grid created is imperative and interconnecting species is valuable from a communications and messaging standpoint for boosting the immune system.

Riparian Invasion Research Lab (RIVRLAB)
If you don't do this right, the Tamarisks will get a foothold again and it will have to be done all over again. Do it correct the first time and maintain it for a few years and your restoration will take hold. Same thing with native grasslands and chaparral biomes which have been taken over by non-native noxious weedy annual ruderals (African Fountain Grass, Mustard, Cheatgrass, Wild Radish, Starthistle, etc). The Sycamores at my mum's place in El Cajon completely tower over everything now. Amazing considering they no longer get irrigated other than rainfall and groundwater availability. The other major fascinating thing for me about the incredibly healthy mycorrhizal grid at my mother's place is that California Sycamore seedlings are germinating in the drier chaparral themed beds which are not riparian. Water is transported through the fungal grid from wetter areas and sustains these seedlings. A good healthy grid will stop ruderals in their tracks, but you still will get weeds. But we call them native tree and shrub seedling weeds. 🙌

photo is mine - El Cajon 2007

Two years old California Sycamores, planted in 2005 and all
six trees from one gallon containers. All were six inches high

Some other references regarding habitat restoration, especially riparian ecosystems
Restoring Southern California Riparian Ecosystems - Lakeside California & San Diego River
My personal ongoing fascination with anything Sycamore
US Forest Service: Riparian Restoration Techniques
Terrain.org: The Thirsty Tree
Save the Colorado River Delta Facebook Page